γωνον ἰσορροπεῖ τῷ Λ, τὸ δὲ ΒΓΔ τῷ ΖΛ, καὶ τρίτον ἐστὶ τοῦ ΒΓΔ τὸ ΖΛ, φανερὸν ὅτι καὶ τὸ ΓΔΗ τρίγωνον τριπλάσιον τοῦ Ζ.
Ἔστω ζυγὸς ὁ ΑΒΓ, μέσον δὲ αὐτοῦ τὸ Β, καὶ κρεμάσθω κατὰ τὸ Β, τὸ δὲ ΓΔΕ τρίγωνον ὀρθογώνιον ὀρθὰν ἔχον τὰν ποτὶ τῷ Ε γωνίαν, καὶ κρεμάσθω ἐκ τοῦ ζυγοῦ κατὰ τὰ Γ, Ε, τὸ δὲ Ζ χωρίον κρεμάσθω κατὰ τὸ Α καὶ ἰσορροπείτω τῷ ΓΔΕ οὕτως ἔχοντι, ὡς νῦν κεῖται, ὃν δὲ λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΕ, τοῦτον ἐχέτω τὸ ΓΔΕ τρίγωνον ποτὶ τὸ Κ χωρίον. φαμὶ δὴ τὸ Ζ χωρίον τοῦ μὲν ΓΔΕ τριγώνου ἔλασσον εἶμεν, τοῦ δὲ Κ μεῖζον.
λελάφθω γὰρ τοῦ ΔΕΓ τριγώνου τὸ κέντρον τοῦ βάρεος, καὶ ἔστω τὸ Θ, καὶ ἁ ΘΗ ἄχθω παρὰ τὰν ΔΕ. ἐπεὶ οὖν ἰσορροπεῖ τὸ ΓΔΕ τρίγωνον τῷ Ζ χωρίῳ, τὸν αὐτὸν ἔχει λόγον τὸ ΓΔΕ χωρίον ποτὶ τὸ Ζ, ὃν ἁ ΑΒ ποτὶ τὰν ΒΗ. ὥστε ἔλασσόν ἐστι τὸ Ζ τοῦ ΓΔΕ. Καὶ ἐπεὶ τὸ ΓΔΕ τρίγωνον ποτὶ μὲν τὸ Ζ τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΒΑ ποτὶ τὰν ΒΗ, ποτὶ δὲ τὸ Κ ὃν ἁ ΒΑ ποτὶ τὰν ΒΕ, δῆλον ὡς μείζονα λόγον ἔχει τὸ ΓΔΕ τρίγωνον ποτὶ τὸ Κ ἢ ποτὶ τὸ Ζ. ὥστε μεῖζόν ἐστι τὸ Ζ τοῦ Κ.